
UNCLASSIFIED

 AD-E403 686

Technical Report ARWSE-TR-14023

CSTRING CONCATENATION

Tom Nealis

September 2015

Approved for public release; distribution is unlimited.

AD

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND
ENGINEERING CENTER

Weapons and Software Engineering Center

Picatinny Arsenal, New Jersey

UNCLASSIFIED

The views, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially
available products or services does not constitute official endorsement by or
approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent
disclosure of its contents or reconstruction of the document. Do not return
to the originator.

UNCLASSIFIED

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-01-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden to Department of Defense, Washington Headquarters Services Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

September 2015
2. REPORT TYPE

Final
3. DATES COVERED (From – To)

4. TITLE AND SUBTITLE

CSTRING CONCATENATION

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHORS

Tom Nealis

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, WSEC
Fire Control Systems & Technology Directorate
(RDAR-WSF-M)
Picatinny Arsenal, NJ 07806-5000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army ARDEC, ESIC
Knowledge & Process Management (RDAR-EIK)
Picatinny Arsenal, NJ 07806-5000

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

Technical Report ARWSE-TR-14023
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

 Concatenating two or more strings together while developing a C++ application is a very common task. For
CStrings, there are two primary ways to concatenate strings. The first is to use the += operator to concatenate
two strings, and the second is to use the + operator. This report compares the two operations.

15. SUBJECT TERMS

std::string Append

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

SAR

18. NUMBER
 OF
 PAGES

13

19a. NAME OF RESPONSIBLE PERSON

Tom Nealis
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPHONE NUMBER (Include area

code) (973) 724-8048

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

Approved for public release; distribution is unlimited.

i

CONTENTS

Page

Introduction 1

Methodology 1

Conclusions 6

References 7

Distribution List 9

UNCLASSIFIED

Approved for public release; distribution is unlimited.

1

INTRODUCTION

Concatenating two or more strings together while developing a C++ application is a very
common task. CStrings provide two operators for concatenating strings. The first method is to use
the += operator, and the second is to use the + operator. This report will analyze and compare the
two operations.

In another report on appending std::strings together, it was found that it was more efficient to
use the += operator instead of the + operator (ref. 1). This then led to the question of whether the
CString class operated the same. It turns out that the CString performs about the same for both
operators when only dealing with about 3 to 4 strings. Once there are more strings, then the +=
operator starts to outperform the + operator.

METHODOLOGY

In order to acquire data for this report, the following program was written, which would
concatenate a certain number of strings using the += operator and also concatenate the same
strings using the + operator. I collected data for concatenating 2 to 10 strings. The source code for
this program is shown on the following pages:

int _tmain(int argc, TCHAR* argv[], TCHAR* envp[])
{
 int nRetCode = 0;

 HMODULE hModule = ::GetModuleHandle(NULL);

 if(hModule != NULL)
 {
 // initialize MFC and print and error on failure
 if(!AfxWinInit(hModule, NULL, ::GetCommandLine(), 0))
 {
 // TODO: change error code to suit your needs
 _tprintf(_T("Fatal Error: MFC initialization failed\n"));
 nRetCode = 1;
 }
 else
 {
 LARGE_INTEGER frequency;
 QueryPerformanceFrequency(&frequency);

 LARGE_INTEGER starting_time, ending_time, elapsed_microseconds;

 //std::ofstream a_file("outfile2.txt");
 //std::ofstream a_file("outfile3.txt");
 //std::ofstream a_file("outfile4.txt");
 //std::ofstream a_file("outfile5.txt");
 //std::ofstream a_file("outfile6.txt");
 //std::ofstream a_file("outfile7.txt");
 //std::ofstream a_file("outfile8.txt");
 //std::ofstream a_file("outfile9.txt");
 std::ofstream a_file("outfile9.txt");

UNCLASSIFIED

Approved for public release; distribution is unlimited.

2

 //setup strings here
 std::vector<CString> my_strings;
 my_strings.push_back(_T("This is the first."));
 my_strings.push_back(_T("This is the second."));
 my_strings.push_back(_T("This is the third."));
 my_strings.push_back(_T("This is the fourth."));
 my_strings.push_back(_T("This is the fifth."));
 my_strings.push_back(_T("This is the sixth."));
 my_strings.push_back(_T("This is the seventh."));
 my_strings.push_back(_T("This is the eighth."));
 my_strings.push_back(_T("This is the nineth."));
 my_strings.push_back(_T("This is the tenth."));

 CString plus_equal;
 CString plus_plus;

 for(auto i = 0u; i < 10; ++i)
 {
 plus_equal = _T("");
 QueryPerformanceCounter(&starting_time);

 //code to measure here
 plus_equal = my_strings[0];
 plus_equal += my_strings[1];
 plus_equal += my_strings[2];
 plus_equal += my_strings[3];
 plus_equal += my_strings[4];
 plus_equal += my_strings[5];
 plus_equal += my_strings[6];
 plus_equal += my_strings[7];
 plus_equal += my_strings[8];
 plus_equal += my_strings[9];

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 //this time is in micro seconds
 auto te_plus_equal = static_cast<double>((elapsed_microseconds.QuadPart *
1000000.0) / frequency.QuadPart);

 plus_plus = _T("");
 QueryPerformanceCounter(&starting_time);

 //code to measure here
 //plus_plus = my_strings[0] + my_strings[1];
 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2];
 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3];
 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] +
my_strings[4];
 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] +
my_strings[4] + my_strings[5];

UNCLASSIFIED

Approved for public release; distribution is unlimited.

3

 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] +
my_strings[4] + my_strings[5] + my_strings[6];
 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] +
my_strings[4] + my_strings[5] + my_strings[6] + my_strings[7];
 //plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] +
my_strings[4] + my_strings[5] + my_strings[6] + my_strings[7] + my_strings[8];
 plus_plus = my_strings[0] + my_strings[1] + my_strings[2] + my_strings[3] +
my_strings[4] + my_strings[5] + my_strings[6] + my_strings[7] + my_strings[8] +
my_strings[9];

 QueryPerformanceCounter(&ending_time);
 elapsed_microseconds.QuadPart = ending_time.QuadPart - starting_time.QuadPart;

 //this time is in micro seconds
 auto te_plus_plus = static_cast<double>((elapsed_microseconds.QuadPart *
1000000.0) / frequency.QuadPart);

 a_file << te_plus_equal << "," << te_plus_plus << "\r\n";

 printf("Run: %d \t\tte plus equal: %4.2f \t\tte plus plus: %4.2f\r\n", i + 1, te_plus_equal,
te_plus_plus);
 }

 a_file.close();

 printf("All done!\n");

 //this stops the program in order to see data;
 getchar();
 }
 }
 else
 {
 // TODO: change error code to suit your needs
 _tprintf(_T("Fatal Error: GetModuleHandle failed\n"));
 nRetCode = 1;
 }

 return nRetCode;
}

The code is very straightforward. Sections need to be commented out depending on the
results that are desired. The built in high resolution counters are used in order to measure how long
the concatenation took. The results are logged to the output file for later processing.

After running this program for each of the results desired, the results are shown in figure 1.

UNCLASSIFIED

Figure 1
CString concatenate

Figure 1 shows that for only a few CStrings, there was a negligible effect on performance.
Once there was about four CStrings, there was a noticeable difference starting to emerge. As with
the std::string, one would tend to use the+= instead of the+ operator.

Let's take a look at the compiler generated assembly code in order to get a better idea why
the measured results were received. For appending three CStrings, the assembly code is as follows:

plus_equal = my_strings[O];
OOEEEOOG push 0
OOEEE008 lea ecx,(ebp-128h)
OOEEEOOE call
std: :vector<ATL: :CString T <wchar _t,Str TraitMFC _DLL <wchar _t,A TL: :Ch T raitsCRT <wchar _t> >
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL: :ChTraitsCRT<wchar_t> >
> > >::operatorO (OEE1258h)
OOEEE013 mov esi,esp
OOEEE015 push eax
OOEEE016 lea ecx,(ebp-134h)
OOEEEO 1 C call dword ptr ds: (OF0541 Ch]
OOEEE022 cmp esi,esp
OOEEE024 call _RTC_CheckEsp (OEE1843h)

plus_equal += my_strings[1];
OOEEE029 push 1
OOEEE02B lea ecx,(ebp-128h]
OOEEE031 call
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
> > >::operatorO (OEE1258h)
OOEEE036 mov esi,esp
OOEEE038 push eax
OOEEE039 lea ecx,(ebp-134h)
OOEEE03F call dword ptr ds:[OF05420h]

Approved for public release; distribution is unlimited.

4

UNCLASSIFIED

Approved for public release; distribution is unlimited.

5

00EEE045 cmp esi,esp
00EEE047 call __RTC_CheckEsp (0EE1843h)
 plus_equal += my_strings[2];
00EEE04C push 2
00EEE04E lea ecx,[ebp-128h]
00EEE054 call
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
> > >::operator[] (0EE1258h)
00EEE059 mov esi,esp
00EEE05B push eax
00EEE05C lea ecx,[ebp-134h]
00EEE062 call dword ptr ds:[0F05420h]
00EEE068 cmp esi,esp
00EEE06A call __RTC_CheckEsp (0EE1843h)
27 instructions

plus_plus = my_strings[0] + my_strings[1] + my_strings[2];
00E6E0FB push 2
00E6E0FD lea ecx,[ebp-128h]
00E6E103 call
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
> > >::operator[] (0E61258h)
00E6E108 push eax
00E6E109 push 1
00E6E10B lea ecx,[ebp-128h]
00E6E111 call
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
> > >::operator[] (0E61258h)
00E6E116 push eax
00E6E117 push 0
00E6E119 lea ecx,[ebp-128h]
00E6E11F call
std::vector<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
>,std::allocator<ATL::CStringT<wchar_t,StrTraitMFC_DLL<wchar_t,ATL::ChTraitsCRT<wchar_t> >
> > >::operator[] (0E61258h)
00E6E124 push eax
00E6E125 lea eax,[ebp-244h]
00E6E12B push eax
00E6E12C call ATL::operator+ (0E61B72h)
00E6E131 add esp,0Ch
00E6E134 mov dword ptr [ebp-2C4h],eax
00E6E13A mov ecx,dword ptr [ebp-2C4h]
00E6E140 mov dword ptr [ebp-2C8h],ecx
00E6E146 mov byte ptr [ebp-4],0Eh
00E6E14A mov edx,dword ptr [ebp-2C8h]
00E6E150 push edx
00E6E151 lea eax,[ebp-238h]
00E6E157 push eax
00E6E158 call ATL::operator+ (0E61B72h)
00E6E15D add esp,0Ch

UNCLASSIFIED

Approved for public release; distribution is unlimited.

6

00E6E160 mov dword ptr [ebp-2CCh],eax
00E6E166 mov ecx,dword ptr [ebp-2CCh]
00E6E16C mov dword ptr [ebp-2D0h],ecx
00E6E172 mov byte ptr [ebp-4],0Fh
00E6E176 mov esi,esp
00E6E178 mov edx,dword ptr [ebp-2D0h]
00E6E17E push edx
00E6E17F lea ecx,[ebp-140h]
00E6E185 call dword ptr ds:[0E8541Ch]
00E6E18B cmp esi,esp
00E6E18D call __RTC_CheckEsp (0E61843h)
00E6E192 mov byte ptr [ebp-4],0Eh
00E6E196 mov esi,esp
00E6E198 lea ecx,[ebp-238h]
00E6E19E call dword ptr ds:[0E85418h]
00E6E1A4 cmp esi,esp
00E6E1A6 call __RTC_CheckEsp (0E61843h)
00E6E1AB mov byte ptr [ebp-4],0Dh
00E6E1AF mov esi,esp
00E6E1B1 lea ecx,[ebp-244h]
00E6E1B7 call dword ptr ds:[0E85418h]
00E6E1BD cmp esi,esp
00E6E1BF call __RTC_CheckEsp (0E61843h)
49 instructions

The += concatenate created 27 lines of machine code versus the 49 lines of machine code
generated by the + operator. So just by the number of instructions created, it can be seen that the
+ operator will take longer. Looking deeper into the assembly, one can see that the + operator is
returning a new buffer for each +, whereas the += operator is doing an actual concatenation on the
current CString.

CONCLUSIONS

It’s very important for a developer to understand the complexities of writing code in one way
versus another. This report shows that the more efficient way to concatenate CStrings is to use the
+= operator. Although the performance is not very different when only a few strings are involved, it
would be better to just always use the more efficient version.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

7

REFERENCES

1. Nealis, T., “std::string Append,” Technical Report ARMET-TR-14026, U.S. Army ARDEC,
Picatinny Arsenal, NJ 07806, In press.

UNCLASSIFIED

Approved for public release; distribution is unlimited.

9

DISTRIBUTION LIST

U.S. Army ARDEC
ATTN: RDAR-EIK
 RDAR-WSF-M, T. Nealis
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

GIDEP Operations Center
P.O. Box 8000
Corona, CA 91718-8000
gidep@gidep.org

LCSD A9 SUJ

UNCLASSIFIED

Patricia Alameda

Patricia Alameda

Andrew Pskowski

Approved for public release; distribution is unlimited.
10

